Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Analysis of a Local Stationarity Scheme for Rate-Independent Systems and Application to Damage (2104.14997v1)

Published 30 Apr 2021 in math.NA, cs.NA, and math.AP

Abstract: This paper is concerned with an approximation scheme for rate-independent systems governed by a non-smooth dissipation and a possibly non-convex energy functional. The scheme is based on the local minimization scheme introduced in [EM06], but relies on local stationarity of the underlying minimization problem. Under the assumption of Mosco-convergence for the dissipation functional, we show that accumulation points exist and are so-called parametrized solutions of the rate-independent system. In particular, this guarantees the existence of parametrized solutions for a rather general setting. Afterwards, we apply the scheme to a model for the evolution of damage.

Citations (3)

Summary

We haven't generated a summary for this paper yet.