A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with $2 \times 2$ submatrices
Abstract: In this paper, we consider the problem of computing the entire sequence of the maximum degree of minors of a block-structured symbolic matrix (a generic partitioned polynomial matrix) $A = (A_{\alpha\beta} x_{\alpha \beta} t{d_{\alpha \beta}})$, where $A_{\alpha\beta}$ is a $2 \times 2$ matrix over a field $\mathbf{F}$, $x_{\alpha \beta}$ is an indeterminate, and $d_{\alpha \beta}$ is an integer for $\alpha = 1,2,\dots, \mu$ and $\beta = 1,2,\dots,\nu$, and $t$ is an additional indeterminate. This problem can be viewed as an algebraic generalization of the maximum weight bipartite matching problem. The main result of this paper is a combinatorial $O(\mu \nu \min{\mu, \nu}2)$-time algorithm for computing the entire sequence of the maximum degree of minors of a $(2 \times 2)$-type generic partitioned polynomial matrix of size $2\mu \times 2\nu$. We also present a minimax theorem, which can be used as a good characterization (NP $\cap$ co-NP characterization) for the computation of the maximum degree of minors of order $k$. Our results generalize the classical primal-dual algorithm (the Hungarian method) and minimax formula (Egerv\'ary's theorem) for the maximum weight bipartite matching problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.