Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supermodularity in Unweighted Graph Optimization I: Branchings and Matchings (1608.05722v2)

Published 19 Aug 2016 in math.CO and cs.DM

Abstract: The main result of the paper is motivated by the following two, apparently unrelated graph optimization problems: (A) as an extension of Edmonds' disjoint branchings theorem, characterize digraphs comprising $k$ disjoint branchings $B_i$ each having a specified number $\mu _i$ of arcs, (B) as an extension of Ryser's maximum term rank formula, determine the largest possible matching number of simple bipartite graphs complying with degree-constraints. The solutions to these problems and to their generalizations will be obtained from a new min-max theorem on covering a supermodular function by a simple degree-constrained bipartite graph. A specific feature of the result is that its minimum cost extension is already NP-complete. Therefore classic polyhedral tools themselves definitely cannot be sufficient for solving the problem, even though they make some good service in our approach.

Citations (14)

Summary

We haven't generated a summary for this paper yet.