Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian Information Criterion for Linear Mixed-effects Models (2104.14725v1)

Published 30 Apr 2021 in stat.AP

Abstract: The use of Bayesian information criterion (BIC) in the model selection procedure is under the assumption that the observations are independent and identically distributed (i.i.d.). However, in practice, we do not always have i.i.d. samples. For example, clustered observations tend to be more similar within the same group, and longitudinal data is collected by measuring the same subject repeatedly. In these scenarios, the assumption in BIC is not satisfied. The concept of effective sample size is brought up and improved BIC is defined by replacing the sample size in the original BIC expression with the effective sample size, which will give us a better theoretical foundation in the circumstance that mixed-effects models involve. Numerical experiment results are also given by comparing the performance of our new BIC with other widely used BICs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.