Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Minimal representations of a finite distributive lattice by principal congruences of a lattice (2104.14693v1)

Published 29 Apr 2021 in math.RA

Abstract: Let the finite distributive lattice $D$ be isomorphic to the congruence lattice of a finite lattice $L$. Let $Q$ denote those elements of $D$ that correspond to principal congruences under this isomorphism. Then $Q$ contains $0,1 \in D$ and all the join-irreducible elements of $D$. If $Q$ contains exactly these elements, we say that $L$ is a minimal representations of $D$ by principal congruences of the lattice $L$. We characterize finite distributive lattices $D$ with a minimal representation by principal congruences with the property that $D$ has at most two dual atoms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.