Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implementing Reinforcement Learning Algorithms in Retail Supply Chains with OpenAI Gym Toolkit (2104.14398v1)

Published 27 Apr 2021 in cs.LG and cs.AI

Abstract: From cutting costs to improving customer experience, forecasting is the crux of retail supply chain management (SCM) and the key to better supply chain performance. Several retailers are using AI/ML models to gather datasets and provide forecast guidance in applications such as Cognitive Demand Forecasting, Product End-of-Life, Forecasting, and Demand Integrated Product Flow. Early work in these areas looked at classical algorithms to improve on a gamut of challenges such as network flow and graphs. But the recent disruptions have made it critical for supply chains to have the resiliency to handle unexpected events. The biggest challenge lies in matching supply with demand. Reinforcement Learning (RL) with its ability to train systems to respond to unforeseen environments, is being increasingly adopted in SCM to improve forecast accuracy, solve supply chain optimization challenges, and train systems to respond to unforeseen circumstances. Companies like UPS and Amazon have developed RL algorithms to define winning AI strategies and keep up with rising consumer delivery expectations. While there are many ways to build RL algorithms for supply chain use cases, the OpenAI Gym toolkit is becoming the preferred choice because of the robust framework for event-driven simulations. This white paper explores the application of RL in supply chain forecasting and describes how to build suitable RL models and algorithms by using the OpenAI Gym toolkit.

Citations (1)

Summary

We haven't generated a summary for this paper yet.