Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transitional Conditional Independence

Published 23 Apr 2021 in math.ST, math.PR, stat.ML, stat.OT, and stat.TH | (2104.11547v2)

Abstract: We develope the framework of transitional conditional independence. For this we introduce transition probability spaces and transitional random variables. These constructions will generalize, strengthen and unify previous notions of (conditional) random variables and non-stochastic variables, (extended) stochastic conditional independence and some form of functional conditional independence. Transitional conditional independence is asymmetric in general and it will be shown that it satisfies all desired relevance relations in terms of left and right versions of the separoid rules, except symmetry, on standard, analytic and universal measurable spaces. As a preparation we prove a disintegration theorem for transition probabilities, i.e. the existence and essential uniqueness of (regular) conditional Markov kernels, on those spaces. Transitional conditional independence will be able to express classical statistical concepts like sufficiency, adequacy and ancillarity. As an application, we will then show how transitional conditional independence can be used to prove a directed global Markov property for causal graphical models that allow for non-stochastic input variables in strong generality. This will then also allow us to show the main rules of causal/do-calculus, relating observational and interventional distributions, in such measure theoretic generality.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.