Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating SpMM Kernel with Cache-First Edge Sampling for Graph Neural Networks (2104.10716v2)

Published 21 Apr 2021 in cs.LG and cs.DC

Abstract: Graph neural networks (GNNs), an emerging deep learning model class, can extract meaningful representations from highly expressive graph-structured data and are therefore gaining popularity for wider ranges of applications. However, current GNNs suffer from the poor performance of their sparse-dense matrix multiplication (SpMM) operator, even when using powerful GPUs. Our analysis shows that 95% of the inference time could be spent on SpMM when running popular GNN models on NVIDIA's advanced V100 GPU. Such SpMM performance bottleneck hinders GNNs' applicability to large-scale problems or the development of more sophisticated GNN models. To address this inference time bottleneck, we introduce ES-SpMM, a cache-first edge sampling mechanism and codesigned SpMM kernel. ES-SpMM uses edge sampling to downsize the graph to fit into GPU's shared memory. It thus reduces the computation cost and improves SpMM's cache locality. To evaluate ES-SpMM's performance, we integrated it with a popular GNN framework, DGL, and tested it using representative GNN models and datasets. Our results show that ES-SpMM outperforms the highly optimized cuSPARSE SpMM kernel by up to 4.35x with no accuracy loss and by 45.3x with less than a 1% accuracy loss.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chien-Yu Lin (14 papers)
  2. Liang Luo (43 papers)
  3. Luis Ceze (38 papers)
Citations (6)