Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Batched Sparse Matrix Multiplication for Accelerating Graph Convolutional Networks (1903.11409v1)

Published 27 Mar 2019 in cs.DC

Abstract: Graph Convolutional Networks (GCNs) are recently getting much attention in bioinformatics and chemoinformatics as a state-of-the-art machine learning approach with high accuracy. GCNs process convolutional operations along with graph structures, and GPUs are used to process enormous operations including sparse-dense matrix multiplication (SpMM) when the graph structure is expressed as an adjacency matrix with sparse matrix format. However, the SpMM operation on small graph, where the number of nodes is tens or hundreds, hardly exploits high parallelism or compute power of GPU. Therefore, SpMM becomes a bottleneck of training and inference in GCNs applications. In order to improve the performance of GCNs applications, we propose new SpMM algorithm especially for small sparse matrix and Batched SpMM, which exploits high parallelism of GPU by processing multiple SpMM operations with single CUDA kernel. To the best of our knowledge, this is the first work of batched approach for SpMM. We evaluated the performance of the GCNs application on TSUBAME3.0 implementing NVIDIA Tesla P100 GPU, and our batched approach shows significant speedups of up to 1.59x and 1.37x in training and inference, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yusuke Nagasaka (2 papers)
  2. Akira Nukada (1 paper)
  3. Ryosuke Kojima (15 papers)
  4. Satoshi Matsuoka (33 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.