Papers
Topics
Authors
Recent
2000 character limit reached

Confidence-Optimal Random Embeddings

Published 6 Apr 2021 in cs.LG and cs.CG | (2104.05628v1)

Abstract: The seminal result of Johnson and Lindenstrauss on random embeddings has been intensively studied in applied and theoretical computer science. Despite that vast body of literature, we still lack of complete understanding of statistical properties of random projections; a particularly intriguing question is: why are the theoretical bounds that far behind the empirically observed performance? Motivated by this question, this work develops Johnson-Lindenstrauss distributions with optimal, data-oblivious, statistical confidence bounds. These bounds are numerically best possible, for any given data dimension, embedding dimension, and distortion tolerance. They improve upon prior works in terms of statistical accuracy, as well as exactly determine the no-go regimes for data-oblivious approaches. Furthermore, the corresponding projection matrices are efficiently samplable. The construction relies on orthogonal matrices, and the proof uses certain elegant properties of the unit sphere. The following techniques introduced in this work are of independent interest: a) a compact expression for distortion in terms of singular eigenvalues of the projection matrix, b) a parametrization linking the unit sphere and the Dirichlet distribution and c) anti-concentration bounds for the Dirichlet distribution. Besides the technical contribution, the paper presents applications and numerical evaluation along with working implementation in Python.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.