Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAttANet: Global attention agreement for convolutional neural networks (2104.05575v2)

Published 12 Apr 2021 in cs.CV and q-bio.NC

Abstract: Transformer attention architectures, similar to those developed for natural language processing, have recently proved efficient also in vision, either in conjunction with or as a replacement for convolutional layers. Typically, visual attention is inserted in the network architecture as a (series of) feedforward self-attention module(s), with mutual key-query agreement as the main selection and routing operation. However efficient, this strategy is only vaguely compatible with the way that attention is implemented in biological brains: as a separate and unified network of attentional selection regions, receiving inputs from and exerting modulatory influence on the entire hierarchy of visual regions. Here, we report experiments with a simple such attention system that can improve the performance of standard convolutional networks, with relatively few additional parameters. Each spatial position in each layer of the network produces a key-query vector pair; all queries are then pooled into a global attention query. On the next iteration, the match between each key and the global attention query modulates the network's activations -- emphasizing or silencing the locations that agree or disagree (respectively) with the global attention system. We demonstrate the usefulness of this brain-inspired Global Attention Agreement network (GAttANet) for various convolutional backbones (from a simple 5-layer toy model to a standard ResNet50 architecture) and datasets (CIFAR10, CIFAR100, Imagenet-1k). Each time, our global attention system improves accuracy over the corresponding baseline.

Citations (2)

Summary

We haven't generated a summary for this paper yet.