Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noise-Resilient Quantum Machine Learning for Stability Assessment of Power Systems (2104.04855v2)

Published 10 Apr 2021 in quant-ph, cs.LG, cs.SY, and eess.SY

Abstract: Transient stability assessment (TSA) is a cornerstone for resilient operations of today's interconnected power grids. This paper is a confluence of quantum computing, data science and machine learning to potentially address the power system TSA challenge. We devise a quantum TSA (qTSA) method to enable scalable and efficient data-driven transient stability prediction for bulk power systems, which is the first attempt to tackle the TSA issue with quantum computing. Our contributions are three-fold: 1) A low-depth, high expressibility quantum neural network for accurate and noise-resilient TSA; 2) A quantum natural gradient descent algorithm for efficient qTSA training; 3) A systematical analysis on qTSA's performance under various quantum factors. qTSA underpins a foundation of quantum-enabled and data-driven power grid stability analytics. It renders the intractable TSA straightforward and effortless in the Hilbert space, and therefore provides stability information for power system operations. Extensive experiments on quantum simulators and real quantum computers verify the accuracy, noise-resilience, scalability and universality of qTSA.

Citations (33)

Summary

We haven't generated a summary for this paper yet.