Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Fragility of Noise Estimation in Kalman Filter: Optimization Can Handle Model-Misspecification

Published 6 Apr 2021 in cs.LG, cs.SY, and eess.SY | (2104.02372v4)

Abstract: The Kalman Filter (KF) parameters are traditionally determined by noise estimation, since under the KF assumptions, the state prediction errors are minimized when the parameters correspond to the noise covariance. However, noise estimation remains the gold-standard regardless of the assumptions - even when it is not equivalent to errors minimization. We demonstrate that even seemingly simple problems may include multiple assumptions violations - which are sometimes hard to even notice. We show theoretically and empirically that even a minor violation may largely shift the optimal parameters. We propose a gradient-based method along with the Cholesky parameterization to explicitly optimize the state prediction errors. We show consistent improvement over noise estimation in tens of experiments in 3 different domains. Finally, we demonstrate that optimization makes the KF competitive with an LSTM model - even in non linear problems.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.