Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Discrete-Time Kalman Filtering within Singular Value Decomposition (1611.03686v3)

Published 11 Nov 2016 in math.OC and cs.SY

Abstract: The paper presents a new Kalman filter (KF) implementation useful in applications where the accuracy of numerical solution of the associated Riccati equation might be crucially reduced by influence of roundoff errors. Since the appearance of the KF in 1960s, it has been recognized that the factored-form of the KF is preferable for practical implementation. The most popular and beneficial techniques are found in the class of square-root algorithms based on the Cholesky decomposition of error covariance matrix. Another important matrix factorization method is the singular value decomposition (SVD) and, hence, further encouraging implementations might be found under this approach. The analysis presented here exposes that the previously proposed SVD-based KF variant is still sensitive to roundoff errors and poorly treats ill-conditioned situations, although the SVD-based strategy is inherently more stable than the conventional KF approach. In this paper we design a new SVD-based KF implementation for enhancing the robustness against roundoff errors, provide its detailed derivation, and discuss the numerical stability issues. A set of numerical experiments are performed for comparative study. The obtained results illustrate that the new SVD-based method is algebraically equivalent to the conventional KF and to the previously proposed SVD-based method, but it outperforms the mentioned techniques for estimation accuracy in ill-conditioned situations.

Citations (38)

Summary

We haven't generated a summary for this paper yet.