Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning-based Codebook Design for Code-domain Non-Orthogonal Multiple Access Approaching Single-User Bit Error Rate Performance (2104.00818v4)

Published 2 Apr 2021 in cs.IT, cs.SY, eess.SY, and math.IT

Abstract: A general form of codebook design for code-domain non-orthogonal multiple access (CD-NOMA) can be considered equivalent to an autoencoder (AE)-based constellation design for multi-user multidimensional modulation (MU-MDM). Due to a constrained design space for optimal constellation, e.g., fixed resource mapping and equal power allocation to all codebooks, however, existing AE architectures produce constellations with suboptimal bit-error-rate (BER) performance. Accordingly, we propose a new architecture for MU-MDM AE and underlying training methodology for joint optimization of resource mapping and a constellation design with bit-to-symbol mapping, aiming at approaching the BER performance of a single-user MDM (SU-MDM) AE model with the same spectral efficiency. The core design of the proposed AE architecture is dense resource mapping combined with the novel power allocation layer that normalizes the sum of user codebook power across the entire resources. This globalizes the domain of the constellation design by enabling flexible resource mapping and power allocation. Furthermore, it allows the AE-based training to approach a global optimal MU-MDM constellations for CD-NOMA. Extensive BER simulation results demonstrate that the proposed design outperforms the existing CD-NOMA designs while approaching the single-user BER performance achieved by the equivalent SU-MDM AE within 0.3 dB over the additive white Gaussian noise channel.

Citations (9)

Summary

We haven't generated a summary for this paper yet.