Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Progressive Codebook Optimization Scheme for Sparse Code Multiple Access in Downlink Channels (2403.16826v2)

Published 25 Mar 2024 in cs.IT and math.IT

Abstract: Sparse code multiple access (SCMA) is a promising technique for enabling massive connectivity and high spectrum efficiency in future machine-type communication networks. However, its performance crucially depends on well-designed multi-dimensional codebooks. In this paper, we propose a novel progressive codebook optimization scheme that can achieve near-optimal performance over downlink fading channels. By examining the pair-wise error probability (PEP), we first derive the symbol error rate (SER) performance of the sparse codebook in downlink channels, which is considered as the design criterion for codebook optimization. Then, the benchmark constellation group at a single resource element is optimized with a sequential quadratic programming approach. Next, we propose a constellation group reconstruction process to assign the sub-constellations in each resource element (RE) progressively. For the current RE, the assignment of the sub-constellations is designed by minimizing the error performance of the product distance of the superimposed codewords in previous REs. The design process involves both permutation and labeling of the sub-constellations in the benchmark constellation group. Simulation results show that the proposed codebooks exhibit significant performance gains over state-of-the-art codebooks in the low signal-to-noise ratio (SNR) region over various downlink fading channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Y. Liu, S. Zhang, X. Mu, Z. Ding, R. Schober, N. Al-Dhahir, E. Hossain, and X. Shen, “Evolution of NOMA toward next generation multiple access (NGMA) for 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037–1071, 2022.
  2. M. Elbayoumi, M. Kamel, W. Hamouda, and A. Youssef, “NOMA-assisted machine-type communications in UDN: State-of-the-art and challenges,” IEEE Commun. Surv. & Tutor., vol. 22, no. 2, pp. 1276–1304, 2020.
  3. Q. Luo, P. Gao, Z. Liu, L. Xiao, Z. Mheich, P. Xiao, and A. Maaref, “An error rate comparison of power domain non-orthogonal multiple access and sparse code multiple access,” IEEE Open J. Commun. Society, vol. 2, pp. 500–511, 2021.
  4. Y.-M. Chen and J.-W. Chen, “On the design of near-optimal sparse code multiple access codebooks,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2950–2962, 2020.
  5. M. Vameghestahbanati, I. D. Marsland, R. H. Gohary, and H. Yanikomeroglu, “Multidimensional constellations for uplink SCMA systems—A comparative study,” IEEE Commun. Surveys Tutor., vol. 21, no. 3, pp. 2169–2194, 2019.
  6. Q. Luo, Z. Liu, G. Chen, Y. Ma, and P. Xiao, “A novel multitask learning empowered codebook design for downlink SCMA networks,” IEEE Wireless Commun. Lett., vol. 11, no. 6, pp. 1268–1272, 2022.
  7. Y.-M. Chen, Y.-C. Hsu, M.-C. Wu, R. Singh, and Y.-C. Chang, “On near-optimal codebook and receiver designs for MIMO-SCMA schemes,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 724–10 738, 2022.
  8. Q. Wang and G. Ren, “A partial Gaussian tree approximation (PGTA) detector for random multiple access oriented scma uplink with codebook collisions,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2295–2308, 2021.
  9. F. Tekçe, U. E. Ayten, and L. Durak-Ata, “SCMA system design with index modulation via codebook assignment,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1699–1708, 2021.
  10. H. Yaoyue, P. Zhiwen, L. Nan, and Y. Xiaohu, “Multidimensional constellation design for spatial modulated SCMA systems,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 8795–8810, 2021.
  11. J. Bao, Z. Ma, M. Xiao, T. A. Tsiftsis, and Z. Zhu, “Bit-interleaved coded SCMA with iterative multiuser detection: Multidimensional constellations design,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5292–5304, 2018.
  12. C. Jiang, Y. Wang, P. Cheng, and W. Xiang, “A low-complexity codebook optimization scheme for sparse code multiple access,” IEEE Trans. Commun., vol. 70, no. 4, pp. 2451–2463, 2022.
  13. Z. Liu and L.-L. Yang, “Sparse or dense: A comparative study of code-domain NOMA systems,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4768–4780, 2021.
  14. T. Lei, S. Ni, N. Cheng, S. Chen, and X. Song, “SCMA codebook for uplink rician fading channels,” IEEE Commun. Lett., vol. 27, no. 2, pp. 527–531, 2023.
  15. M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA codebook design,” in IEEE Veh Technol Conf (VTC2014-Fall), Vancouver, BC, Canada,, 2014, pp. 1–5.
  16. H. Nikopour, E. Yi, A. Bayesteh, K. Au, M. Hawryluck, H. Baligh, and J. Ma, “SCMA for downlink multiple access of 5g wireless networks,” in IEEE Global Commun. Conf., GLOBECOM, Austin, TX, USA, 2014, pp. 3940–3945.
  17. C. Huang, B. Su, T. Lin, and Y. Huang, “Downlink SCMA codebook design with low error rate by maximizing minimum Euclidean distance of superimposed codewords,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 5231–5245, 2022.
  18. V. Vikas, A. Rajesh, K. Deka, and S. Sharma, “A comprehensive technique to design SCMA codebooks,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1735–1739, 2022.
  19. Y. Zheng, J. Xin, H. Wang, S. Zhang, and Y. Qiao, “A low-complexity codebook design scheme for SCMA systems over an AWGN channel,” IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8675–8688, 2022.
  20. L. Li, Z. Ma, P. Z. Fan, and L. Hanzo, “High-dimensional codebook design for the SCMA downlink,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 10 118–10 122, 2018.
  21. L. Tian, J. Zhong, M. Zhao, and L. Wen, “A suboptimal algorithm for SCMA codebook design over uplink rayleigh fading channels,” in in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), Jun. 2018, pp. 1–5.
  22. M. Alam and Q. Zhang, “Designing optimum mother constellation and codebooks for SCMA,” in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.
  23. T. Lei, S. Ni, N. Cheng, S. Chen, and X. Song, “A novel scheme for the construction of the SCMA codebook,” IEEE Access, vol. 10, pp. 100 987–100 998, 2022.
  24. Q. Luo, Z. Liu, G. Chen, P. Xiao, Y. Ma, and A. Maaref, “A design of low-projection SCMA codebooks for ultra-low decoding complexity in downlink IoT networks,” IEEE Trans. Wireless Commun., vol. 22, no. 10, pp. 6608–6623, 2023.
  25. X. Zhang, D. Zhang, L. Yang, G. Han, H.-H. Chen, and D. Zhang, “SCMA codebook design based on uniquely decomposable constellation groups,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4828–4842, 2021.
  26. K. Deka, M. Priyadarsini, S. Sharma, and B. Beferull-Lozano, “Design of SCMA codebooks using differential evolution,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020, pp. 1–7.
  27. Z. Mheich, L. Wen, P. Xiao, and A. Maaref, “Design of SCMA codebooks based on golden angle modulation,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1501–1509, 2019.
  28. L. Yu, P. Fan, D. Cai, and Z. Ma, “Design and analysis of SCMA codebook based on Star-Qam signaling constellations,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10 543–10 553, 2018.
  29. X. Li, Z. Gao, Y. Gui, Z. Liu, P. Xiao, and L. Yu, “Design of power-imbalanced SCMA codebook,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2140–2145, 2022.
  30. J. Yuan, Z. Chen, B. Vucetic, and W. Firmanto, “Performance and design of space-time coding in fading channels,” IEEE Trans. Wireless Commun., vol. 51, no. 12, pp. 1991–1996, 2003.
  31. Q. Luo, Z. Liu, G. Chen, and P. Xiao, “Enhancing signal space diversity for SCMA over Rayleigh fading channels,” IEEE Trans. Wireless Commun., pp. 1–1, 2023.
  32. G. Karagiannidis, D. Zogas, and S. Kotsopoulos, “On the multivariate Nakagami-m distribution with exponential correlation,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1240–1244, 2003.
Citations (5)

Summary

We haven't generated a summary for this paper yet.