Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A boundary element method for the solution of finite mobility ratio immiscible displacement in a Hele-Shaw cell (2103.16839v1)

Published 31 Mar 2021 in physics.flu-dyn and cond-mat.soft

Abstract: In this paper, the interaction between two immiscible fluids with a finite mobility ratio is investigated numerically within a Hele-Shaw cell. Fingering instabilities initiated at the interface between a low viscosity fluid and a high viscosity fluid are analysed at varying capillary numbers and mobility ratios using a finite mobility ratio model. The present work is motivated by the possible development of interfacial instabilities that can occur in porous media during the process of CO$_2$ sequestration, but does not pretend to analyse this complex problem. Instead, we present a detailed study of the analogous problem occurring in a Hele-Shaw cell, giving indications of possible plume patterns that can develop during the CO$_2$ injection. The numerical scheme utilises a boundary element method in which the normal velocity at the interface of the two fluids is directly computed through the evaluation of a hypersingular integral. The boundary integral equation is solved using a Neumann convergent series with cubic B-Spline boundary discretisation, exhibiting 6th order spatial convergence. The convergent series allows the long term non-linear dynamics of growing viscous fingers to be explored accurately and efficiently. Simulations in low mobility ratio regimes reveal large differences in fingering patterns compared to those predicted by previous high mobility ratio models. Most significantly, classical finger shielding between competing fingers is inhibited. Secondary fingers can possess significant velocity, allowing greater interaction with primary fingers compared to high mobility ratio flows. Eventually, this interaction can lead to base thinning and the breaking of fingers into separate bubbles.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube