Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Asymptotics of linear differential systems and application to quasi-normal modes of nonrotating black holes (2103.14744v2)

Published 26 Mar 2021 in gr-qc, astro-ph.CO, and hep-th

Abstract: The traditional approach to perturbations of nonrotating black holes in General Relativity uses the reformulation of the equations of motion into a radial second-order Schr\"odinger-like equation, whose asymptotic solutions are elementary. Imposing specific boundary conditions at spatial infinity and near the horizon defines, in particular, the quasi-normal modes of black holes. For more complicated equations of motion, as encountered for instance in modified gravity models with different background solutions and/or additional degrees of freedom, we present a new approach that analyses directly the first-order differential system in its original form and extracts the asymptotic behaviour of perturbations, without resorting to a second-order reformulation. As a pedagogical illustration, we apply this treatment to the perturbations of Schwarzschild black holes and then show that the standard quasi-normal modes can be obtained numerically by solving this first-order system with a spectral method. This new approach paves the way for a generic treatment of the asymptotic behaviour of black hole perturbations and the identification of quasi-normal modes in theories of modified gravity.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.