Papers
Topics
Authors
Recent
2000 character limit reached

Isoperimetric inequalities in the Brownian plane

Published 26 Mar 2021 in math.PR | (2103.14573v2)

Abstract: We consider the model of the Brownian plane, which is a pointed non-compact random metric space with the topology of the complex plane. The Brownian plane can be obtained as the scaling limit in distribution of the uniform infinite planar triangulation or the uniform infinite planar quadrangulation and is conjectured to be the universal scaling limit of many others random planar lattices. We establish sharp bounds on the probability of having a short cycle separating the ball of radius $r$ centered at the distinguished point from infinity. Then we prove a strong version of the spatial Markov property of the Brownian plane. Combining our study of short cycles with this strong spatial Markov property we obtain sharp isoperimetric bounds for the Brownian plane.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.