Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems (2103.14320v2)
Abstract: We propose a primal-dual interior-point method (IPM) with convergence to second-order stationary points (SOSPs) of nonlinear semidefinite optimization problems, abbreviated as NSDPs. As far as we know, the current algorithms for NSDPs only ensure convergence to first-order stationary points such as Karush-Kuhn-Tucker points, but without a worst-case iteration complexity. The proposed method generates a sequence approximating SOSPs while minimizing a primal-dual merit function for NSDPs by using scaled gradient directions and directions of negative curvature. Under some assumptions, the generated sequence accumulates at an SOSP with a worst-case iteration complexity. This result is also obtained for a primal IPM with a slight modification. Finally, our numerical experiments show the benefits of using directions of negative curvature in the proposed method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.