GPGCD, an Iterative Method for Calculating Approximate GCD of Univariate Polynomials, with the Complex Coefficients
Abstract: We present an extension of our GPGCD method, an iterative method for calculating approximate greatest common divisor (GCD) of univariate polynomials, to polynomials with the complex coefficients. For a given pair of polynomials and a degree, our algorithm finds a pair of polynomials which has a GCD of the given degree and whose coefficients are perturbed from those in the original inputs, making the perturbations as small as possible, along with the GCD. In our GPGCD method, the problem of approximate GCD is transfered to a constrained minimization problem, then solved with a so-called modified Newton method, which is a generalization of the gradient-projection method, by searching the solution iteratively. While our original method is designed for polynomials with the real coefficients, we extend it to accept polynomials with the complex coefficients in this paper.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.