Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uniqueness and continuity of the solution to $L_p$ dual Minkowski problem (2103.13075v1)

Published 24 Mar 2021 in math.MG and math.DG

Abstract: Lutwak, Yang and Zhang \cite{LYZ2018} introduced the $L_p$ dual curvature measure that unifies several other geometric measures in dual Brunn-Minkowski theory and Brunn- Minkowski theory. Motivated by works in \cite{LYZ2018}, we consider the uniqueness and continuity of the solution to the $L_p$ dual Minkowski problem. To extend the important work (Theorem \ref{uniquepolytope}) of LYZ to the case for general convex bodies, we establish some new Minkowski-type inequalities which are closely related to the optimization problem associated with the $L_p$ dual Minkowski problem. When $q< p$, the uniqueness of the solution to the $L_p$ dual Minkowski problem for general convex bodies is obtained. Moreover, we obtain the continuity of the solution to the $L_p$ dual Minkowski problem for convex bodies.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)