Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Dimensional Landscape Hypothesis is True: DNNs can be Trained in Tiny Subspaces (2103.11154v2)

Published 20 Mar 2021 in cs.LG, cs.NE, and math.OC

Abstract: Deep neural networks (DNNs) usually contain massive parameters, but there is redundancy such that it is guessed that the DNNs could be trained in low-dimensional subspaces. In this paper, we propose a Dynamic Linear Dimensionality Reduction (DLDR) based on low-dimensional properties of the training trajectory. The reduction is efficient, which is supported by comprehensive experiments: optimization in 40 dimensional spaces can achieve comparable performance as regular training over thousands or even millions of parameters. Since there are only a few optimization variables, we develop a quasi-Newton-based algorithm and also obtain robustness against label noises, which are two follow-up experiments to show the advantages of finding low-dimensional subspaces.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com