Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cognitive simulation models for inertial confinement fusion: Combining simulation and experimental data (2103.10590v1)

Published 19 Mar 2021 in cs.LG and physics.plasm-ph

Abstract: The design space for inertial confinement fusion (ICF) experiments is vast and experiments are extremely expensive. Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions. However, ICF multiphysics codes must make simplifying assumptions, and thus deviate from experimental measurements for complex implosions. For more effective design and investigation, simulations require input from past experimental data to better predict future performance. In this work, we describe a cognitive simulation method for combining simulation and experimental data into a common, predictive model. This method leverages a machine learning technique called transfer learning, the process of taking a model trained to solve one task, and partially retraining it on a sparse dataset to solve a different, but related task. In the context of ICF design, neural network models trained on large simulation databases and partially retrained on experimental data, producing models that are far more accurate than simulations alone. We demonstrate improved model performance for a range of ICF experiments at the National Ignition Facility, and predict the outcome of recent experiments with less than ten percent error for several key observables. We discuss how the methods might be used to carry out a data-driven experimental campaign to optimize performance, illustrating the key product -- models that become increasingly accurate as data is acquired.

Citations (18)

Summary

We haven't generated a summary for this paper yet.