Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multifidelity Bayesian optimization method for inertial confinement fusion design (2312.10218v1)

Published 15 Dec 2023 in physics.plasm-ph, cs.NA, and math.NA

Abstract: Due to their cost, experiments for inertial confinement fusion (ICF) heavily rely on numerical simulations to guide design. As simulation technology progresses, so too can the fidelity of models used to plan for new experiments. However, these high-fidelity models are by themselves insufficient for optimal experimental design, because their computational cost remains too high to efficiently and effectively explore the numerous parameters required to describe a typical experiment. Traditionally, ICF design has relied on low-fidelity modeling to initially identify potentially interesting design regions, which are then subsequently explored via selected high-fidelity modeling. In this paper, we demonstrate that this two-step approach can be insufficient: even for simple design problems, a two-step optimization strategy can lead high-fidelity searching towards incorrect regions and consequently waste computational resources on parameter regimes far away from the true optimal solution. We reveal that a primary cause of this behavior in ICF design problems is the presence of low-fidelity optima in distinct regions of the parameter space from high-fidelity optima. To address this issue, we propose an iterative multifidelity Bayesian optimization method based on Gaussian Process Regression that leverages both low- and high-fidelity modelings. We demonstrate, using both two- and eight-dimensional ICF test problems, that our algorithm can effectively utilize low-fidelity modeling for exploration, while automatically refining promising designs with high-fidelity models. This approach proves to be more efficient than relying solely on high-fidelity modeling for optimization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. R. Anirudh, R. Archibald, M. S. Asif, et al., “2022 review of data-driven plasma science,”  (2022).
  2. J. L. Peterson, K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer, R. C. Nora, B. K. Spears,  and P. T. Springer, “Zonal flow generation in inertial confinement fusion implosions,” Physics of Plasmas 24, 032702 (2017).
  3. P. W. Hatfield, S. J. Rose,  and R. H. H. Scott, “The blind implosion-maker: Automated inertial confinement fusion experiment design,” Physics of Plasmas 26, 062706 (2019), https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.5091985/15972322/062706_1_online.pdf .
  4. N. N. Vazirani, M. J. Grosskopf, D. J. Stark, P. A. Bradley, B. M. Haines, E. N. Loomis, S. L. England,  and W. A. Scales, “Coupling multi-fidelity xRAGE with machine learning for graded inner shell design optimization in double shell capsules,” Physics of Plasmas 30, 062704 (2023), https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0129565/17972159/062704_1_5.0129565.pdf .
  5. P. I. Frazier, “Bayesian optimization,” in Recent advances in optimization and modeling of contemporary problems (2018) pp. 255–278.
  6. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams,  and N. de Freitas, “Taking the human out of the loop: A review of bayesian optimization,” Proceedings of the IEEE 104, 148–175 (2016).
  7. J. Wang and N. Zabaras, “A Bayesian inference approach to the inverse heat conduction problem,” International Journal of Heat and Mass Transfer 47, 3927–3941 (2004).
  8. A. Mathern, O. S. Steinholtz, A. Sjöberg, et al., “Multi-objective constrained bayesian optimization for structural design,” Structural and Multidisciplinary Optimization 63, 689–701 (2021).
  9. J. Wang and P. Papadopoulos, “Optimization of process parameters in additive manufacturing based on the finite element method,”  (2023), arXiv:2310.15525 .
  10. R. Calandra, A. Seyfarth, J. Peters,  and M. P. Deisenroth, “Bayesian optimization for learning gaits under uncertainty,” Annals of Mathematics and Artificial Intelligence 76, 5–23 (2016).
  11. M. Zuluaga, G. Sergent, A. Krause,  and M. Püschel, “Active learning for multi-objective optimization,” in International Conference on Machine Learning (2013) pp. 462–470.
  12. J. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. Smith,  and M. West, “Optimization under unknown constraints,” Bayesian Statistics 9, 229 (2011).
  13. J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, New York, 2006).
  14. J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger,  and J. P. Cunningham, “Bayesian optimization with inequality constraints,” in Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14 (JMLR.org, 2014) pp. II–937–II–945.
  15. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,  and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research 12, 2825–2830 (2011).
  16. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,  and G. Varoquaux, “API design for machine learning software: experiences from the scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and Machine Learning (2013) pp. 108–122.
  17. M. C. Kennedy and A. O’Hagan, “Predicting the output from a complex computer code when fast approximations are available,” Biometrika 87, 1–13 (2000).
  18. L. Le Gratiet, Multi-fidelity Gaussian process regression for computer experiments, Theses, Université Paris-Diderot - Paris VII (2013).
  19. E. Contal, V. Perchet,  and N. Vayatis, “Gaussian process optimization with mutual information,” in Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14 (JMLR.org, 2014) pp. II–253–II–261.
  20. S. Sarkar, S. Mondal, M. Joly, M. E. Lynch, S. D. Bopardikar, R. Acharya,  and P. Perdikaris, “Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration,” Journal of Mechanical Design 141 (2019).
  21. J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore,  and B. A. Naylor, “OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization,” Structural and Multidisciplinary Optimization 59, 1075–1104 (2019).
  22. M. M. Marinak, G. Kerbel, N. Gentile, O. Jones, D. Munro, S. Pollaine, T. Dittrich,  and S. Haan, “Three-dimensional HYDRA simulations of National Ignition Facility targets,” Physics of Plasmas 8, 2275–2280 (2001).
Citations (5)

Summary

We haven't generated a summary for this paper yet.