Extending Quantum Probability from Real Axis to Complex Plane (2103.05518v1)
Abstract: Probability is an important question in the ontological interpretation of quantum mechanics. It has been discussed in some trajectory interpretations such as Bohmian mechanics and stochastic mechanics. New questions arise when the probability domain extends to the complex space, including the generation of complex trajectory, the definition of the complex probability, and the relation of the complex probability to the quantum probability. The complex treatment proposed in this article applies the optimal quantum guidance law to derive the stochastic differential equation governing a particle random motion in the complex plane. The probability distribution of the particle position over the complex plane is formed by an ensemble of the complex quantum random trajectories, which are solved from the complex stochastic differential equation. Meanwhile, this probability distribution is verified by the solution of the complex Fokker Planck equation. It is shown that quantum probability and classical probability can be integrated under the framework of complex probability, such that they can both be derived from the same probability distribution by different statistical ways of collecting spatial points.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.