Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Approach for Non-stationary Linear Bandits (2103.05324v2)

Published 9 Mar 2021 in cs.LG

Abstract: This paper investigates the problem of non-stationary linear bandits, where the unknown regression parameter is evolving over time. Existing studies develop various algorithms and show that they enjoy an $\widetilde{\mathcal{O}}(T{2/3}P_T{1/3})$ dynamic regret, where $T$ is the time horizon and $P_T$ is the path-length that measures the fluctuation of the evolving unknown parameter. In this paper, we discover that a serious technical flaw makes their results ungrounded, and then present a fix, which gives an $\widetilde{\mathcal{O}}(T{3/4}P_T{1/4})$ dynamic regret without modifying original algorithms. Furthermore, we demonstrate that instead of using sophisticated mechanisms, such as sliding window or weighted penalty, a simple restarted strategy is sufficient to attain the same regret guarantee. Specifically, we design an UCB-type algorithm to balance exploitation and exploration, and restart it periodically to handle the drift of unknown parameters. Our approach enjoys an $\widetilde{\mathcal{O}}(T{3/4}P_T{1/4})$ dynamic regret. Note that to achieve this bound, the algorithm requires an oracle knowledge of the path-length $P_T$. Combining the bandits-over-bandits mechanism by treating our algorithm as the base learner, we can further achieve the same regret bound in a parameter-free way. Empirical studies also validate the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Peng Zhao (162 papers)
  2. Lijun Zhang (239 papers)
  3. Yuan Jiang (48 papers)
  4. Zhi-Hua Zhou (126 papers)
Citations (75)