A Simple Approach for Non-stationary Linear Bandits (2103.05324v2)
Abstract: This paper investigates the problem of non-stationary linear bandits, where the unknown regression parameter is evolving over time. Existing studies develop various algorithms and show that they enjoy an $\widetilde{\mathcal{O}}(T{2/3}P_T{1/3})$ dynamic regret, where $T$ is the time horizon and $P_T$ is the path-length that measures the fluctuation of the evolving unknown parameter. In this paper, we discover that a serious technical flaw makes their results ungrounded, and then present a fix, which gives an $\widetilde{\mathcal{O}}(T{3/4}P_T{1/4})$ dynamic regret without modifying original algorithms. Furthermore, we demonstrate that instead of using sophisticated mechanisms, such as sliding window or weighted penalty, a simple restarted strategy is sufficient to attain the same regret guarantee. Specifically, we design an UCB-type algorithm to balance exploitation and exploration, and restart it periodically to handle the drift of unknown parameters. Our approach enjoys an $\widetilde{\mathcal{O}}(T{3/4}P_T{1/4})$ dynamic regret. Note that to achieve this bound, the algorithm requires an oracle knowledge of the path-length $P_T$. Combining the bandits-over-bandits mechanism by treating our algorithm as the base learner, we can further achieve the same regret bound in a parameter-free way. Empirical studies also validate the effectiveness of our approach.
- Peng Zhao (162 papers)
- Lijun Zhang (239 papers)
- Yuan Jiang (48 papers)
- Zhi-Hua Zhou (126 papers)