Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Semi-supervised Learning for ASR (2103.05149v1)

Published 9 Mar 2021 in cs.CL

Abstract: Pseudo-labeling is the most adopted method for pre-training automatic speech recognition (ASR) models. However, its performance suffers from the supervised teacher model's degrading quality in low-resource setups and under domain transfer. Inspired by the successes of contrastive representation learning for computer vision and speech applications, and more recently for supervised learning of visual objects, we propose Contrastive Semi-supervised Learning (CSL). CSL eschews directly predicting teacher-generated pseudo-labels in favor of utilizing them to select positive and negative examples. In the challenging task of transcribing public social media videos, using CSL reduces the WER by 8% compared to the standard Cross-Entropy pseudo-labeling (CE-PL) when 10hr of supervised data is used to annotate 75,000hr of videos. The WER reduction jumps to 19% under the ultra low-resource condition of using 1hr labels for teacher supervision. CSL generalizes much better in out-of-domain conditions, showing up to 17% WER reduction compared to the best CE-PL pre-trained model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Alex Xiao (10 papers)
  2. Christian Fuegen (36 papers)
  3. Abdelrahman Mohamed (59 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.