Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP (2103.04556v2)

Published 8 Mar 2021 in cs.DS, cs.AI, cs.LG, and stat.ML

Abstract: It is challenging to deal with censored data, where we only have access to the incomplete information of survival time instead of its exact value. Fortunately, under linear predictor assumption, people can obtain guaranteed coverage for the confidence band of survival time using methods like Cox Regression. However, when relaxing the linear assumption with neural networks (e.g., Cox-MLP (Katzman et al., 2018; Kvamme et al., 2019)), we lose the guaranteed coverage. To recover the guaranteed coverage without linear assumption, we propose two algorithms based on conformal inference. In the first algorithm WCCI, we revisit weighted conformal inference and introduce a new non-conformity score based on partial likelihood. We then propose a two-stage algorithm T-SCI, where we run WCCI in the first stage and apply quantile conformal inference to calibrate the results in the second stage. Theoretical analysis shows that T-SCI returns guaranteed coverage under milder assumptions than WCCI. We conduct extensive experiments on synthetic data and real data using different methods, which validate our analysis.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.