Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Geometric effects on the electronic structure of curved nanotubes and curved graphene: the case of the helix, catenary, helicoid, and catenoid (2103.00610v2)

Published 28 Feb 2021 in cond-mat.mes-hall

Abstract: Since electrons in a ballistic regime perceive a carbon nanotube or a graphene layer structure as a continuous medium, we can use the study of the quantum dynamics of one electron constrained to a curve or surface to obtain a qualitative description of the conduction electrons' behavior. The confinement process of a quantum particle to a curve or surface leads us, in the so-called "confining potential formalism" (CPF), to a geometry-induced potential (GIP) in the effective Schr\"odinger equation. With these considerations, this work aims to study in detail the consequences of constraining a quantum particle to a helix, catenary, helicoid, or catenoid, exploring the relations between these curves and surfaces using differential geometry. Initially, we use the variational method to estimate the energy of the particle in its ground state, and thus, we obtain better approximations with the use of the confluent Heun function through numerical calculations. Thus, we conclude that a quantum particle constrained to an infinite helix has its angular momentum quantized due to the geometry of the curve, while in the cases of the catenary, helicoid, and catenoid the particle can be found either in a single bound state or in excited states which constitute a continuous energy band. Additionally, we propose measurements of physical observables capable of discriminating the topologies of the studied surfaces, in the context of topological metrology.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.