Papers
Topics
Authors
Recent
Search
2000 character limit reached

On modules with finite reducing Gorenstein dimension

Published 27 Feb 2021 in math.AC | (2103.00253v1)

Abstract: If $M$ is a nonzero finitely generated module over a commutative Noetherian local ring $R$ such that $M$ has finite injective dimension and finite Gorenstein dimension, then it follows from a result of Holm that $M$ has finite projective dimension, and hence a result of Foxby implies that $R$ is Gorenstein. We investigate whether the same conclusion holds for nonzero finitely generated modules that have finite injective dimension and finite reducing Gorenstein dimension, where the reducing Gorenstein dimension is a finer invariant than the classical Gorenstein dimension, in general.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.