Papers
Topics
Authors
Recent
2000 character limit reached

Representing and computing the B-derivative of an $EC^r$ vector field's $PC^r$ flow

Published 21 Feb 2021 in math.DS, cs.SY, and eess.SY | (2102.10702v2)

Abstract: This paper concerns the first-order approximation of the piecewise-differentiable flow generated by a class of nonsmooth vector fields. Specifically, we represent and compute the Bouligand (or B-)derivative of the piecewise-$Cr$ flow generated by an event-selected $Cr$ vector field. Our results are remarkably efficient: although there are factorially many "pieces" of the desired derivative, we provide an algorithm that evaluates its action on a given tangent vector using polynomial time and space, and verify the algorithm's correctness by deriving a representation for the B-derivative that requires "only" exponential time and space to construct. We apply our methods in two classes of illustrative examples: piecewise-constant vector fields and mechanical systems subject to unilateral constraints.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.