Scalar Representation of 2D Steady Vector Fields (2401.06576v1)
Abstract: We introduce a representation of a 2D steady vector field ${{\mathbf v}}$ by two scalar fields $a$, $b$, such that the isolines of $a$ correspond to stream lines of ${{\mathbf v}}$, and $b$ increases with constant speed under integration of ${{\mathbf v}}$. This way, we get a direct encoding of stream lines, i.e., a numerical integration of ${{\mathbf v}}$ can be replaced by a local isoline extraction of $a$. To guarantee a solution in every case, gradient-preserving cuts are introduced such that the scalar fields are allowed to be discontinuous in the values but continuous in the gradient. Along with a piecewise linear discretization and a proper placement of the cuts, the fields $a$ and $b$ can be computed. We show several evaluations on non-trivial vector fields.
- The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum, 23(2):203–221, 2004. ISSN 1467-8659. doi:10.1111/j.1467-8659.2004.00753.x. URL http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x.
- The State of the Art in Flow Visualisation: Feature Extraction and Tracking. Computer Graphics Forum, 2003. ISSN 1467-8659. doi:10.1111/j.1467-8659.2003.00723.x.
- The state of the art in vortex extraction. Computer Graphics Forum, 2017.
- The State of the Art in Topology?Based Visualization of Unsteady Flow. Computer Graphics Forum, 2011a. ISSN 1467-8659. doi:org:443/handle/10.1111/v30i6pp1789-1811.
- The state of the art in flow visualization: Partition-based techniques. In H. Hauser, S. Strassburger, and H. Theisel, editors, Simulation and Visualization 2008, pages 75–92. SCS Publishing House, SCS Publishing House, 2008.
- Illustrative Flow Visualization: State of the Art, Trends and Challenges. In Marie-Paule Cani and Fabio Ganovelli, editors, Eurographics 2012 - State of the Art Reports. The Eurographics Association, 2012. doi:10.2312/conf/EG2012/stars/075-094.
- Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27–36, 1989.
- Visualizing non-linear vector field topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109–116, 1998.
- Wim de Leeuw and Robert van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization ’99, pages 149–354, 1999a.
- Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.
- Wim de Leeuw and Robert van Liere. Visualization of global flow structures using multiple levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages 45–52, 1999b.
- A topology simplification method for 2D vector fields. In Proc. IEEE Visualization, pages 359–366, 2000.
- Continuous topology simplification of planar vector fields. In Proc. IEEE Visualization, pages 159 – 166, 2001.
- Topology-preserving smoothing of vector fields. IEEE Transactions on Visualization and Computer Graphics, 7(3):222–229, 2001.
- Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization, pages 343–350, 2000.
- Nikolai M. Faaland Suresh Lodha and Jose C. Renteria. Topology preserving top-down compression of 2D vector fields using bintree and triangular quadtrees. IEEE Transactions on Visualization and Computer Graphics, 9(4):433–442, 2003.
- Compression of 2D vector fields under guaranteed topology preservation. Computer Graphics Forum (Eurographics 2003), 22(3):333–342, 2003a.
- Holger Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595–604, 2002.
- Topological construction and visualization of higher order 3D vector fields. Computer Graphics Forum (Proc. Eurographics), 23(3):469–478, 2004a.
- A tool for visualizing the topology of three-dimensional vector fields. In Proc. IEEE Visualization, pages 33–40, 1991.
- Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11:36–46, 1991.
- Improving topological segmentation of three-dimensional vector fields. In Data Visualization (Proc. VisSym), pages 203–212, 2003.
- Topological segmentation in three-dimensional vector fields. IEEE Transactions on Visualization and Computer Graphics, 10(2):198–205, 2004.
- Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In Proc. IEEE Visualization 2003, pages 225–232, 2003b.
- Boundary switch connectors for topological visualization of complex 3D vector fields. In Data Visualization (Proc. VisSym), pages 183–192, 2004b.
- Topology-based flow visualization, the state of the art. In Helwig Hauser, Hans Hagen, and Holger Theisel, editors, Topology-based Methods in Visualization, Mathematics and Visualization, pages 1–19. Springer, 2007. ISBN 978-3-540-70822-3. doi:10.1007/978-3-540-70823-0_1. URL http://dx.doi.org/10.1007/978-3-540-70823-0_1.
- The state of the art in topology-based visualization of unsteady flow. Computer Graphics Forum, 30(6):1789–1811, 2011b. ISSN 1467-8659.
- From numerics to combinatorics: a survey of topological methods for vector field visualization. Journal of Visualization, pages 1–26, 2016.
- A survey of topology-based methods in visualization. In Computer Graphics Forum, volume 35, pages 643–667. Wiley Online Library, 2016.
- George Haller. Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 149:248–277, 2001.
- Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147(3-4):352–370, 2000. ISSN 0167-2789. doi:http://dx.doi.org/10.1016/S0167-2789(00)00142-1.
- Filtering of FTLE for visualizing spatial separation in unsteady 3D flow. In Topological Methods in Data Analysis and Visualization II, pages 237–253. Springer, 2012.
- George Haller. Lagrangian coherent structures from approximate velocity data. Physics of Fluids, 14(6), 2002. doi:http://dx.doi.org/10.1063/1.1477449.
- Pollution release tied to invariant manifolds: A case study for the coast of Florida. Physica D, 210(1):1–20, 2005.
- The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep Sea Research Part II: Topical Studies in Oceanography, 56(3-5):161–172, 2009. ISSN 0967-0645. doi:DOI: 10.1016/j.dsr2.2008.08.008. URL http://www.sciencedirect.com/science/article/B6VGC-4TJ1HH1-3/2/9f098e9e2684e5cd8f53e69ab3c59c26.
- Experimental and numerical investigation of the kinematic theory of unsteady separation. Journal of Fluid Mechanics, 611, 2008. doi:10.1017/S0022112008002395.
- Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212(7):271–304, 2005. ISSN 0167-2789. doi:http://dx.doi.org/10.1016/S0167-2789(00)00199-8.
- Time-Dependent 2D Vector Field Topology: An Approach Inspired by Lagrangian Coherent Structures. Computer Graphics Forum, 29(1):88–100, 2010.
- A time-dependent vector field topology based on streak surfaces. IEEE Transactions on Visualization and Computer Graphics, 19(3):379–392, 2013.
- A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(1):017504, 2010. doi:10.1063/1.3270049. URL http://link.aip.org/link/?CHA/20/017504/1.
- MCFTLE: Monte Carlo rendering of finite-time Lyapunov exponent fields. Computer Graphics Forum (Proc. EuroVis), 35(3):381–390, 2016.
- Visualization of coherent structures in transient 2D flows. In Proceedings of TopoInVis 2007, pages 1–13, 2009.
- Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Transactions on Visualization and Computer Graphics, 13(6):1464–1471, 2007. ISSN 1077-2626. doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70551.
- Visualizing Lagrangian coherent structures and comparison to vector field topology. In Proceedings of TopoInVis 2007, pages 15–30, 2009.
- Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization), 13(6):1456–1463, 2007.
- Time-Dependent Visualization of Lagrangian Coherent Structures by Grid Advection. In Proceedings of TopoInVis 2009, pages 151–165. Springer, 2011.
- Extracting features from time-dependent vector fields using internal reference frames. Computer Graphics Forum (Proc. EuroVis), 33(3):21–30, June 2014.
- Computation of localized flow for steady and unsteady vector fields and its applications. IEEE Transactions on Visualization and Computer Graphics, 13(4):641–651, 2007.
- Topology-inspired galilean invariant vector field analysis. In 2016 IEEE Pacific Visualization Symposium (PacificVis), pages 72–79. IEEE, 2016.
- Robin Forman. A user’s guide to discrete morse theory. In Proc. of the 2001 Internat. Conf. on Formal Power Series and Algebraic Combinatorics, A special volume of Advances in Applied Mathematics, page 48, 2001.
- Combinatorial 2d vector field topology extraction and simplification. In Valerio Pascucci, Xavier Tricoche, Hans Hagen, and Julien Tierny, editors, Topological Methods in Data Analysis and Visualization, pages 103 – 114. 2011. ISBN 978-3-642-15013-5. doi:10.1007/978-3-642-15014-2_9.
- Vector field editing and periodic orbit extraction using morse decomposition. IEEE Transactions on Visualization & Computer Graphics, 13:769–785, 07 2007. ISSN 1077-2626. doi:10.1109/TVCG.2007.1021. URL doi.ieeecomputersociety.org/10.1109/TVCG.2007.1021.
- Flow visualization with quantified spatial and temporal errors using edge maps. IEEE Trans. Vis. Comput. Graph., 18(9):1383–1396, 2012. doi:10.1109/TVCG.2011.265. URL https://doi.org/10.1109/TVCG.2011.265.
- Critical point cancellation in 3d vector fields: Robustness and discussion. Transactions on Visualization and Computer Graphics, 2016.
- Visualizing robustness of critical points for 2d time-varying vector fields. Comput. Graph. Forum, 32(3):221–230, 2013. doi:10.1111/cgf.12109. URL https://doi.org/10.1111/cgf.12109.
- Hierarchical morse complexes for piecewise linear 2-manifolds. In Proceedings of the Seventeenth Annual Symposium on Computational Geometry, SCG ’01, pages 70–79, New York, NY, USA, 2001. ACM. ISBN 1-58113-357-X. doi:10.1145/378583.378626. URL http://doi.acm.org/10.1145/378583.378626.
- A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph., 10(4):385–396, 2004. doi:10.1109/TVCG.2004.3. URL https://doi.org/10.1109/TVCG.2004.3.
- Morse-smale complexes for piecewise linear 3-manifolds. In Proceedings of the 19th ACM Symposium on Computational Geometry, San Diego, CA, USA, June 8-10, 2003, pages 361–370, 2003. doi:10.1145/777792.777846. URL http://doi.acm.org/10.1145/777792.777846.
- Topology-based simplification for feature extraction from 3d scalar fields. In 16th IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, October 23-28, 2005, pages 535–542, 2005. doi:10.1109/VISUAL.2005.1532839. URL https://doi.org/10.1109/VISUAL.2005.1532839.
- Applications of forman’s discrete morse theory to topology visualization and mesh compression. IEEE Trans. Vis. Comput. Graph., 10(5):499–508, 2004. doi:10.1109/TVCG.2004.18. URL https://doi.org/10.1109/TVCG.2004.18.
- Computing accurate morse-smale complexes from gradient vector fields. In Green in Software Engineering, pages 205–218. 2015. doi:10.1007/978-3-662-44900-4_12. URL https://doi.org/10.1007/978-3-662-44900-4_12.
- Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph., 13(6):1440–1447, 2007. doi:10.1109/TVCG.2007.70552. URL https://doi.org/10.1109/TVCG.2007.70552.
- Simplification of tetrahedral meshes with accurate error evaluation. In IEEE Visualization 2000, October 8-13, 2000, Hilton Hotel, Salt Lake City, Utah, USA, Proceedings., pages 85–92, 2000. doi:10.1109/VISUAL.2000.885680. URL https://doi.org/10.1109/VISUAL.2000.885680.
- Simplifying flexible isosurfaces using local geometric measures. In 15th IEEE Visualization 2004 Conference, VIS 2004, Austin, TX, USA, October 10-15, 2004, pages 497–504, 2004. doi:10.1109/VISUAL.2004.96. URL https://doi.org/10.1109/VISUAL.2004.96.
- Topological noise removal. In Proceedings of the Graphics Interface 2001 Conference, Ottawa, Ontario, Canada, June 7-9, 2001, pages 19–26, 2001. URL http://www.graphicsinterface.org/proceedings/2001/121/.
- Topological volume skeletonization using adaptive tetrahedralization. In 2004 Geometric Modeling and Processing (GMP 2004), Theory and Applications, 13-15 April 2004, Beijing, China, pages 227–236, 2004. doi:10.1109/GMAP.2004.1290044. URL https://doi.org/10.1109/GMAP.2004.1290044.
- Computing contour trees in all dimensions. Comput. Geom., 24(2):75–94, 2003. doi:10.1016/S0925-7721(02)00093-7. URL https://doi.org/10.1016/S0925-7721(02)00093-7.
- Interactive quadrangulation with reeb atlases and connectivity textures. IEEE Trans. Vis. Comput. Graph., 18(10):1650–1663, 2012. doi:10.1109/TVCG.2011.270. URL https://doi.org/10.1109/TVCG.2011.270.
- A. Clebsch. Ueber die integration der hydrodynamischen gleichungen. Journal für die reine und angewandte Mathematik, 56:1–10, 1859. URL http://eudml.org/doc/147740.
- Peter Kotiuga. Clebsch potentials and the visualization of three-dimensional solenoidal vector fields. 27:3986 – 3989, 10 1991.
- On the identification of a vortex. Journal of Fluid Mechanics, 285:69?94, 1995. doi:10.1017/S0022112095000462.
- Axel Brandenburg. Magnetic field evolution in simulations with euler potentials. Monthly Notices of the Royal Astronomical Society, 401(1):347–354, 2010. ISSN 1365-2966. doi:10.1111/j.1365-2966.2009.15640.x. URL http://dx.doi.org/10.1111/j.1365-2966.2009.15640.x.
- Construction of initial vortex-surface fields and clebsch potentials for flows with high-symmetry using first integrals. Physics of Fluids, 28(3):037101, 2016. doi:10.1063/1.4943368.
- Clebsch representation near points where the vorticity vanishes. Physics of Fluids, 12(4):744–746, 2000. doi:10.1063/1.870331.
- Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph., 36(4):142:1–142:11, July 2017. doi:10.1145/3072959.3073591. URL http://dx.doi.org/10.1145/3072959.3073591.
- Kinodynamic skinning using volume-preserving deformations. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pages 129–140, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association. ISBN 978-1-59593-624-0. URL http://dl.acm.org/citation.cfm?id=1272690.1272709.
- Vector field based shape deformations. ACM Trans. Graph., 25(3):1118–1125, July 2006. ISSN 0730-0301. doi:10.1145/1141911.1142002. URL http://doi.acm.org/10.1145/1141911.1142002.
- Texture mapping using surface flattening via multidimensional scaling. 8:198–207, 05 2002.
- Mesh parameterization: Theory and practice. In ACM SIGGRAPH ASIA 2008 Courses, SIGGRAPH Asia ’08, pages 12:1–12:87, New York, NY, USA, 2008. ACM. doi:10.1145/1508044.1508091. URL http://doi.acm.org/10.1145/1508044.1508091.
- Interactively controlled quad remeshing of high resolution 3d models. ACM Trans. Graph., 35(6):218:1–218:13, November 2016. ISSN 0730-0301. doi:10.1145/2980179.2982413. URL http://doi.acm.org/10.1145/2980179.2982413.
- M. Campen and L. Kobbelt. Quad Layout Embedding via Aligned Parameterization. Computer Graphics Forum, 2014. ISSN 1467-8659. doi:10.1111/cgf.12401.
- Optimally cutting a surface into a disk. In Proceedings of the Eighteenth Annual Symposium on Computational Geometry, SCG ’02, pages 244–253, New York, NY, USA, 2002. ACM. ISBN 1-58113-504-1. doi:10.1145/513400.513430. URL http://doi.acm.org/10.1145/513400.513430.
- Finite time steady 2d vector field topology. In Topological Methods in Data Analysis and Visualization IV, pages 253–266, 2017.
- Grid-independent detection of closed stream lines in 2d vector fields. In Proc. Vision, Modeling and Visualization (VMV) 2004, pages 421–428, Stanford, USA, November 15–18 2004.
- Boundary Switch Connectors for Topological Visualization of Complex 3D Vector Fields, pages 183–192. 2004c.