Papers
Topics
Authors
Recent
2000 character limit reached

The ring of modular forms for the even unimodular lattice of signature (2,18)

Published 18 Feb 2021 in math.AG | (2102.09224v1)

Abstract: We show that the ring of modular forms with characters for the even unimodular lattice of signature (2,18) is obtained from the invariant ring of $\mathrm{Sym}(\mathrm{Sym}8(V) \oplus \mathrm{Sym}{12}(V))$ with respect to the action of $\mathrm{SL}(V)$ by adding a Borcherds product of weight 132 with one relation of weight 264, where $V$ is a 2-dimensional $\mathbb{C}$-vector space. The proof is based on the study of the moduli space of elliptic K3 surfaces with a section.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.