Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparsely Factored Neural Machine Translation (2102.08934v1)

Published 17 Feb 2021 in cs.CL and cs.AI

Abstract: The standard approach to incorporate linguistic information to neural machine translation systems consists in maintaining separate vocabularies for each of the annotated features to be incorporated (e.g. POS tags, dependency relation label), embed them, and then aggregate them with each subword in the word they belong to. This approach, however, cannot easily accommodate annotation schemes that are not dense for every word. We propose a method suited for such a case, showing large improvements in out-of-domain data, and comparable quality for the in-domain data. Experiments are performed in morphologically-rich languages like Basque and German, for the case of low-resource scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.