Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation (2102.07301v2)

Published 15 Feb 2021 in cs.LG, math.OC, and stat.ML

Abstract: We study reinforcement learning in an infinite-horizon average-reward setting with linear function approximation, where the transition probability function of the underlying Markov Decision Process (MDP) admits a linear form over a feature mapping of the current state, action, and next state. We propose a new algorithm UCRL2-VTR, which can be seen as an extension of the UCRL2 algorithm with linear function approximation. We show that UCRL2-VTR with Bernstein-type bonus can achieve a regret of $\tilde{O}(d\sqrt{DT})$, where $d$ is the dimension of the feature mapping, $T$ is the horizon, and $\sqrt{D}$ is the diameter of the MDP. We also prove a matching lower bound $\tilde{\Omega}(d\sqrt{DT})$, which suggests that the proposed UCRL2-VTR is minimax optimal up to logarithmic factors. To the best of our knowledge, our algorithm is the first nearly minimax optimal RL algorithm with function approximation in the infinite-horizon average-reward setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yue Wu (339 papers)
  2. Dongruo Zhou (51 papers)
  3. Quanquan Gu (198 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.