Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logarithmic Regret for Reinforcement Learning with Linear Function Approximation (2011.11566v2)

Published 23 Nov 2020 in cs.LG, math.OC, and stat.ML

Abstract: Reinforcement learning (RL) with linear function approximation has received increasing attention recently. However, existing work has focused on obtaining $\sqrt{T}$-type regret bound, where $T$ is the number of interactions with the MDP. In this paper, we show that logarithmic regret is attainable under two recently proposed linear MDP assumptions provided that there exists a positive sub-optimality gap for the optimal action-value function. More specifically, under the linear MDP assumption (Jin et al. 2019), the LSVI-UCB algorithm can achieve $\tilde{O}(d{3}H5/\text{gap}_{\text{min}}\cdot \log(T))$ regret; and under the linear mixture MDP assumption (Ayoub et al. 2020), the UCRL-VTR algorithm can achieve $\tilde{O}(d{2}H5/\text{gap}_{\text{min}}\cdot \log3(T))$ regret, where $d$ is the dimension of feature mapping, $H$ is the length of episode, $\text{gap}_{\text{min}}$ is the minimal sub-optimality gap, and $\tilde O$ hides all logarithmic terms except $\log(T)$. To the best of our knowledge, these are the first logarithmic regret bounds for RL with linear function approximation. We also establish gap-dependent lower bounds for the two linear MDP models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiafan He (27 papers)
  2. Dongruo Zhou (51 papers)
  3. Quanquan Gu (198 papers)
Citations (90)

Summary

We haven't generated a summary for this paper yet.