Low regularity estimates of the Lie-Totter time-splitting Fourier spectral method for the logarithmic Schrödinger equation (2401.02288v1)
Abstract: In this paper, we conduct rigorous error analysis of the Lie-Totter time-splitting Fourier spectral scheme for the nonlinear Schr\"odinger equation with a logarithmic nonlinear term $f(u)=u\ln|u|2$ (LogSE) and periodic boundary conditions on a $d$-dimensional torus $\mathbb Td$. Different from existing works based on regularisation of the nonlinear term $ f(u)\approx f\varepsilon(u)=u\ln (|u| + \varepsilon )2,$ we directly discretize the LogSE with the understanding $f(0)=0.$ Remarkably, in the time-splitting scheme, the solution flow map of the nonlinear part: $g(u)= u {\rm e}{-{\rm} i t \ln|u|{2}}$ has a higher regularity than $f(u)$ (which is not differentiable at $u=0$ but H\"older continuous), where $g(u)$ is Lipschitz continuous and possesses a certain fractional Sobolev regularity with index $0<s<1$. Accordingly, we can derive the $L2$-error estimate: $O\big((\tau{s/2} + N{-s})\ln! N\big)$ of the proposed scheme for the LogSE with low regularity solution $u\in C((0,T]; Hs( \mathbb{T}d)\cap L\infty( \mathbb{T}d)).$ Moreover, we can show that the estimate holds for $s=1$ with more delicate analysis of the nonlinear term and the associated solution flow maps. Furthermore, we provide ample numerical results to demonstrate such a fractional-order convergence for initial data with low regularity. This work is the first one devoted to the analysis of splitting scheme for the LogSE without regularisation in the low regularity setting, as far as we can tell.
- Quantum Bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent. J. Phys. B-At. Mol. Opt., 44(19):195303, 2011.
- Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation. SIAM J. Numer. Anal., 57(2):657–680, 2019.
- Regularized numerical methods for the logarithmic Schrödinger equation. Numer. Math., 143(2):461–487, 2019.
- Error estimates of local energy regularization for the logarithmic Schrödinger equation. Math. Models Methods Appl. Sci., 32(1):101–136, 2022.
- Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity. To appear in Math. Comp., 2023.
- Optimal error bounds on the exponential wave integrator for the nonlinear Schrödinger equation with low regularity potential and nonlinearity. To appear in SIAM J. Numer. Anal., 2023.
- A. Benyi and T. Oh. The Sobolev inequality on the torus revisited. Publ. Math. Debrecen, 83(3):359–374, 2013.
- I. Białynicki-Birula and J. Mycielski. Nonlinear wave mechanics. Ann. Physics, 100(1-2):62–93, 1976.
- I. Białynicki-Birula and J. Mycielski. Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scripta, 20(3-4):539–544, 1979. Special issue on solitons in physics.
- Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. Phys. Rev. E (3), 68(3):036607, 6, 2003.
- A new second-order low-regularity integrator for the cubic nonlinear Schrödinger equation. IMA J. Numer. Anal., page drad017, 2023.
- R. Carles. Logarithmic Schrödinger equation and isothermal fluids. EMS Surv. Math. Sci., 9(1):99–134, 2022.
- R. Carles and G. Ferriere. Logarithmic Schrödinger equation with quadratic potential. Nonlinearity, 34(12):8283–8310, 2021.
- R. Carles and I. Gallagher. Universal dynamics for the defocusing logarithmic Schrödinger equation. Duke Math. J., 167(9):1761–1801, 2018.
- Low regularity solutions to the logarithmic Schrödinger equation, 2023. arXiv:2311.01801 [math].
- R. Carles and C.M. Su. Nonuniqueness and nonlinear instability of Gaussons under repulsive harmonic potential. Commun. Partial. Differ. Equ., 47(6):1176–1192, 2022.
- R. Carles and C.M. Su. Numerical study of the logarithmic Schrödinger equation with repulsive harmonic potential. Discrete Contin. Dyn. Syst. - B, 28(5):3136–3159, 2023.
- T. Cazenave and A. Haraux. Équations d’évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse Math., 5e série, 2(1):21–51, 1980.
- F. Demengel and G. Demengel. Fractional Sobolev Spaces. Springer, London, 2012.
- R. Fiorenza. Hölder and locally Hölder Continuous Functions, and Open Sets of Class Cksuperscript𝐶𝑘{C}^{k}italic_C start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT, Ck,λsuperscript𝐶𝑘𝜆{C}^{k,\lambda}italic_C start_POSTSUPERSCRIPT italic_k , italic_λ end_POSTSUPERSCRIPT. Frontiers in Mathematics. Springer International Publishing, Cham, 2016.
- Propagation of partially coherent solitons in saturable logarithmic media: A comparative analysis. Phys. Rev. A., 80(3):033819, 2009.
- M. Hayashi and T. Ozawa. The Cauchy problem for the logarithmic Schrödinger equation revisited, 2023. arXiv:2309.01695 [math].
- E.F. Hefter. Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. Phys. Rev. A., 32(2):1201, 1985.
- Unified model for partially coherent solitons in logarithmically nonlinear media. Phys. Rev. E, 61(3):3122, 2000.
- Optimal error estimates for Chebyshev approximations of functions with limited regularity in fractional Sobolev-type spaces. Math. Comp., 88(320):2857–2895, 2019.
- Logarithmic Schrödinger-like equation as a model for magma transport. EPL (Europhysics Letters), 63(3):472, 2003.
- Fourier integrator for periodic NLS: Low regularity estimates via discrete Bourgain spaces. J. Eur. Math. Soc., 25(10):3913–3952, 2022.
- A. Ostermann and K. Schratz. Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math., 18(3):731–755, 2018.
- P. Paraschis and G. E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete Contin. Dyn. Syst. - B, 28:245–261, 2023.
- L. Pareschi and T. Rey. Moment preserving Fourier–Galerkin spectral methods and application to the Boltzmann equation. SIAM J. Numer. Anal., 60(6):3216–3240, 2022.
- Spectral Methods: Algorithms, Analysis and Applications. Springer-Verlag, New York, 2011.
- Error analysis of a first-order IMEX scheme for the logarithmic Schrödinger equation. To appear in SIAM J. Numer. Anal., 2023.
- K.G. Zloshchastiev. Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences. Gravit. Cosmol., 16(4):288–297, 2010.