Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Estimation of Gaussian random displacement using non-Gaussian states (2102.05276v4)

Published 10 Feb 2021 in quant-ph

Abstract: In continuous-variable quantum information processing, quantum error correction of Gaussian errors requires simultaneous estimation of both quadrature components of displacements on phase space. However, quadrature operators $x$ and $p$ are non-commutative conjugate observables, whose simultaneous measurement is prohibited by the uncertainty principle. Gottesman-Kitaev-Preskill (GKP) error correction deals with this problem using complex non-Gaussian states called GKP states. On the other hand, simultaneous estimation of displacement using experimentally feasible non-Gaussian states has not been well studied. In this paper, we consider a multi-parameter estimation problem of displacements assuming an isotropic Gaussian prior distribution and allowing post-selection of measurement outcomes. We derive a lower bound for the estimation error when only Gaussian operations are used, and show that even simple non-Gaussian states such as single-photon states can beat this bound. Based on Ghosh's bound, we also obtain a lower bound for the estimation error when the maximum photon number of the input state is given. Our results reveal the role of non-Gaussianity in the estimation of displacements, and pave the way toward the error correction of Gaussian errors using experimentally feasible non-Gaussian states.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.