Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Statistical Inference for Polyak-Ruppert Averaged Zeroth-order Stochastic Gradient Algorithm (2102.05198v3)

Published 10 Feb 2021 in stat.ML and cs.LG

Abstract: Statistical machine learning models trained with stochastic gradient algorithms are increasingly being deployed in critical scientific applications. However, computing the stochastic gradient in several such applications is highly expensive or even impossible at times. In such cases, derivative-free or zeroth-order algorithms are used. An important question which has thus far not been addressed sufficiently in the statistical machine learning literature is that of equipping stochastic zeroth-order algorithms with practical yet rigorous inferential capabilities so that we not only have point estimates or predictions but also quantify the associated uncertainty via confidence intervals or sets. Towards this, in this work, we first establish a central limit theorem for Polyak-Ruppert averaged stochastic zeroth-order gradient algorithm. We then provide online estimators of the asymptotic covariance matrix appearing in the central limit theorem, thereby providing a practical procedure for constructing asymptotically valid confidence sets (or intervals) for parameter estimation (or prediction) in the zeroth-order setting.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.