Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Grained Gap-Dependent Bounds for Tabular MDPs via Adaptive Multi-Step Bootstrap (2102.04692v2)

Published 9 Feb 2021 in cs.LG

Abstract: This paper presents a new model-free algorithm for episodic finite-horizon Markov Decision Processes (MDP), Adaptive Multi-step Bootstrap (AMB), which enjoys a stronger gap-dependent regret bound. The first innovation is to estimate the optimal $Q$-function by combining an optimistic bootstrap with an adaptive multi-step Monte Carlo rollout. The second innovation is to select the action with the largest confidence interval length among admissible actions that are not dominated by any other actions. We show when each state has a unique optimal action, AMB achieves a gap-dependent regret bound that only scales with the sum of the inverse of the sub-optimality gaps. In contrast, Simchowitz and Jamieson (2019) showed all upper-confidence-bound (UCB) algorithms suffer an additional $\Omega\left(\frac{S}{\Delta_{min}}\right)$ regret due to over-exploration where $\Delta_{min}$ is the minimum sub-optimality gap and $S$ is the number of states. We further show that for general MDPs, AMB suffers an additional $\frac{|Z_{mul}|}{\Delta_{min}}$ regret, where $Z_{mul}$ is the set of state-action pairs $(s,a)$'s satisfying $a$ is a non-unique optimal action for $s$. We complement our upper bound with a lower bound showing the dependency on $\frac{|Z_{mul}|}{\Delta_{min}}$ is unavoidable for any consistent algorithm. This lower bound also implies a separation between reinforcement learning and contextual bandits.

Citations (40)

Summary

We haven't generated a summary for this paper yet.