Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A note on the spectrum of irreducible operators and semigroups (2102.03772v1)

Published 7 Feb 2021 in math.FA and math.SP

Abstract: Let $T$ denote a positive operator with spectral radius $1$ on, say, an $Lp$-space. A classical result in infinite dimensional Perron--Frobenius theory says that, if $T$ is irreducible and power bounded, then its peripheral point spectrum is either empty or a subgroup of the unit circle. In this note we show that the analogous assertion for the entire peripheral spectrum fails. More precisely, for every finite union $U$ of finite subgroups of the unit circle we construct an irreducible stochastic operator on $\ell1$ whose peripheral spectrum equals $U$. We also give a similar construction for the $C_0$-semigroup case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.