Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Ensemble perspective for understanding temporal credit assignment (2102.03740v2)

Published 7 Feb 2021 in cond-mat.dis-nn, cs.LG, cs.NE, and q-bio.NC

Abstract: Recurrent neural networks are widely used for modeling spatio-temporal sequences in both nature language processing and neural population dynamics. However, understanding the temporal credit assignment is hard. Here, we propose that each individual connection in the recurrent computation is modeled by a spike and slab distribution, rather than a precise weight value. We then derive the mean-field algorithm to train the network at the ensemble level. The method is then applied to classify handwritten digits when pixels are read in sequence, and to the multisensory integration task that is a fundamental cognitive function of animals. Our model reveals important connections that determine the overall performance of the network. The model also shows how spatio-temporal information is processed through the hyperparameters of the distribution, and moreover reveals distinct types of emergent neural selectivity. To provide a mechanistic analysis of the ensemble learning, we first derive an analytic solution of the learning at the infinitely-large-network limit. We then carry out a low-dimensional projection of both neural and synaptic dynamics, analyze symmetry breaking in the parameter space, and finally demonstrate the role of stochastic plasticity in the recurrent computation. Therefore, our study sheds light on mechanisms of how weight uncertainty impacts the temporal credit assignment in recurrent neural networks from the ensemble perspective.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.