Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A unified half-integral Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups (2102.01986v1)

Published 3 Feb 2021 in math.CO

Abstract: Erd\H{o}s and P\'{o}sa proved in 1965 that there is a duality between the maximum size of a packing of cycles and the minimum size of a vertex set hitting all cycles. Such a duality does not hold if we restrict to odd cycles. However, in 1999, Reed proved an analogue for odd cycles by relaxing packing to half-integral packing. We prove a far-reaching generalisation of the theorem of Reed; if the edges of a graph are labelled by finitely many abelian groups, then there is a duality between the maximum size of a half-integral packing of cycles whose values avoid a fixed finite set for each abelian group and the minimum size of a vertex set hitting all such cycles. A multitude of natural properties of cycles can be encoded in this setting, for example cycles of length at least $\ell$, cycles of length $p$ modulo $q$, cycles intersecting a prescribed set of vertices at least $t$ times, and cycles contained in given $\mathbb{Z}_2$-homology classes in a graph embedded on a fixed surface. Our main result allows us to prove a duality theorem for cycles satisfying a fixed set of finitely many such properties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.