A unified half-integral Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups (2102.01986v1)
Abstract: Erd\H{o}s and P\'{o}sa proved in 1965 that there is a duality between the maximum size of a packing of cycles and the minimum size of a vertex set hitting all cycles. Such a duality does not hold if we restrict to odd cycles. However, in 1999, Reed proved an analogue for odd cycles by relaxing packing to half-integral packing. We prove a far-reaching generalisation of the theorem of Reed; if the edges of a graph are labelled by finitely many abelian groups, then there is a duality between the maximum size of a half-integral packing of cycles whose values avoid a fixed finite set for each abelian group and the minimum size of a vertex set hitting all such cycles. A multitude of natural properties of cycles can be encoded in this setting, for example cycles of length at least $\ell$, cycles of length $p$ modulo $q$, cycles intersecting a prescribed set of vertices at least $t$ times, and cycles contained in given $\mathbb{Z}_2$-homology classes in a graph embedded on a fixed surface. Our main result allows us to prove a duality theorem for cycles satisfying a fixed set of finitely many such properties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.