Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProMIL: Probabilistic Multiple Instance Learning for Medical Imaging (2306.10535v2)

Published 18 Jun 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Multiple Instance Learning (MIL) is a weakly-supervised problem in which one label is assigned to the whole bag of instances. An important class of MIL models is instance-based, where we first classify instances and then aggregate those predictions to obtain a bag label. The most common MIL model is when we consider a bag as positive if at least one of its instances has a positive label. However, this reasoning does not hold in many real-life scenarios, where the positive bag label is often a consequence of a certain percentage of positive instances. To address this issue, we introduce a dedicated instance-based method called ProMIL, based on deep neural networks and Bernstein polynomial estimation. An important advantage of ProMIL is that it can automatically detect the optimal percentage level for decision-making. We show that ProMIL outperforms standard instance-based MIL in real-world medical applications. We make the code available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Łukasz Struski (37 papers)
  2. Dawid Rymarczyk (20 papers)
  3. Arkadiusz Lewicki (3 papers)
  4. Robert Sabiniewicz (1 paper)
  5. Jacek Tabor (106 papers)
  6. Bartosz Zieliński (42 papers)
Citations (5)