Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A splitting semi-implicit method for stochastic incompressible Euler equations on $\mathbb T^2$ (2102.01482v1)

Published 2 Feb 2021 in math.NA and cs.NA

Abstract: The main difficulty in studying numerical method for stochastic evolution equations (SEEs) lies in the treatment of the time discretization (J. Printems. [ESAIM Math. Model. Numer. Anal. (2001)]). Although fruitful results on numerical approximations for SEEs have been developed, as far as we know, none of them include that of stochastic incompressible Euler equations. To bridge this gap, this paper proposes and analyses a splitting semi-implicit method in temporal direction for stochastic incompressible Euler equations on torus $\mathbb{T}2$ driven by an additive noise. By a Galerkin approximation and the fixed point technique, we establish the unique solvability of the proposed method. Based on the regularity estimates of both exact and numerical solutions, we measure the error in $L2(\mathbb{T}2)$ and show that the pathwise convergence order is nearly $\frac{1}{2}$ and the convergence order in probability is almost $1$.

Summary

We haven't generated a summary for this paper yet.