Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher order time discretization method for the stochastic Stokes equations with multiplicative noise (2211.02757v3)

Published 4 Nov 2022 in math.NA and cs.NA

Abstract: In this paper, we propose a new approach for the time-discretization of the incompressible stochastic Stokes equations with multiplicative noise. Our new strategy is based on the classical Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of at most $1$ for both velocity and pressure approximations. The proof is based on a new H\"older continuity estimate of the velocity solution. While the errors of the velocity approximation are estimated in the standard $L2$- and $H1$-norms, the pressure errors are carefully analyzed in a special norm because of the low regularity of the pressure solution. In addition, a new interpretation of the pressure solution, which is very useful in computation, is also introduced. Numerical experiments are also provided to validate the error estimates and their sharpness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.