Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attributed Graph Alignment (2102.00665v4)

Published 1 Feb 2021 in cs.IT and math.IT

Abstract: Motivated by various data science applications including de-anonymizing user identities in social networks, we consider the graph alignment problem, where the goal is to identify the vertex/user correspondence between two correlated graphs. Existing work mostly recovers the correspondence by exploiting the user-user connections. However, in many real-world applications, additional information about the users, such as user profiles, might be publicly available. In this paper, we introduce the attributed graph alignment problem, where additional user information, referred to as attributes, is incorporated to assist graph alignment. We establish both the achievability and converse results on recovering vertex correspondence exactly, where the conditions match for certain parameter regimes. Our results span the full spectrum between models that only consider user-user connections and models where only attribute information is available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. R. Singh, J. Xu, and B. Berger, “Global alignment of multiple protein interaction networks with application to functional orthology detection,” Proceedings of the National Academy of Sciences, vol. 105, no. 35, pp. 12 763–12 768, 2008.
  2. M. Cho and K. M. Lee, “Progressive graph matching: Making a move of graphs via probabilistic voting,” in Proc. IEEE Comput. Vision and Pattern Recognit., 2012, pp. 398–405.
  3. A. D. Haghighi, A. Y. Ng, and C. D. Manning, “Robust textual inference via graph matching,” in Human Lang. Technol. and Empirical Methods in Natural Lang. Process., 2005.
  4. A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in Proc. IEEE Symp. Security and Privacy, 2009, pp. 173–187.
  5. N. Korula and S. Lattanzi, “An efficient reconciliation algorithm for social networks,” Proc. VLDB Endow., vol. 7, no. 5, p. 377–388, Jan. 2014.
  6. P. Pedarsani and M. Grossglauser, “On the privacy of anonymized networks,” in Proc. Ann. ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD), 2011, pp. 1235–1243.
  7. D. Cullina and N. Kiyavash, “Improved achievability and converse bounds for Erdős-Rényi graph matching,” ACM SIGMETRICS Perform. Evaluation Rev., vol. 44, no. 1, pp. 63–72, 2016.
  8. Y. Wu, J. Xu, and S. H. Yu, “Settling the sharp reconstruction thresholds of random graph matching,” IEEE Transactions on Information Theory, vol. 68, no. 8, pp. 5391–5417, 2022.
  9. D. Cullina and N. Kiyavash, “Exact alignment recovery for correlated Erdős-Rényi graphs,” arXiv:1711.06783 [cs.IT], 2017.
  10. A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in Proc. IEEE Symp. Security and Privacy, 2008, pp. 111–125.
  11. E. Mossel and J. Xu, “Seeded graph matching via large neighborhood statistics,” Random Struct. & Algorithms, vol. 57, no. 3, pp. 570–611, 2020.
  12. Z. Wang, N. Zhang, W. Wang, and L. Wang, “On the feasible region of efficient algorithms for attributed graph alignment,” arXiv preprint arXiv:2201.10106, 2022.
  13. D. Cullina, P. Mittal, and N. Kiyavash, “Fundamental limits of database alignment,” in Proc. IEEE Int. Symp. Information Theory, 2018, pp. 651–655.
  14. O. E. Dai, D. Cullina, N. Kiyavash, and M. Grossglauser, “Analysis of a canonical labeling algorithm for the alignment of correlated erdos-rényi graphs,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 3, no. 2, pp. 1–25, 2019.
  15. J. Ding, Z. Ma, Y. Wu, and J. Xu, “Efficient random graph matching via degree profiles,” 2020. [Online]. Available: https://arxiv.org/abs/1811.07821
  16. Z. Fan, C. Mao, Y. Wu, and J. Xu, “Spectral graph matching and regularized quadratic relaxations: Algorithm and theory,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119.   PMLR, 13–18 July 2020, pp. 2985–2995.
  17. C. Mao, M. Rudelson, and K. Tikhomirov, “Exact matching of random graphs with constant correlation,” 2021. [Online]. Available: https://arxiv.org/abs/2110.05000
  18. C. Mao, Y. Wu, J. Xu, and S. H. Yu, “Random graph matching at otter’s threshold via counting chandeliers,” 2022. [Online]. Available: https://arxiv.org/abs/2209.12313
  19. V. Lyzinski, D. E. Fishkind, and C. E. Priebe, “Seeded graph matching for correlated erdös-rényi graphs.” J. Mach. Learn. Res., vol. 15, no. 1, pp. 3513–3540, 2014.
  20. D. E. Fishkind, S. Adali, H. G. Patsolic, L. Meng, D. Singh, V. Lyzinski, and C. E. Priebe, “Seeded graph matching,” Pattern recognition, vol. 87, pp. 203–215, 2019.
  21. S. Zhang and H. Tong, “Attributed network alignment: Problem definitions and fast solutions,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 9, pp. 1680–1692, 2018.
  22. ——, “Final: Fast attributed network alignment,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1345–1354.
  23. Q. Zhou, L. Li, X. Wu, N. Cao, L. Ying, and H. Tong, “Attent: Active attributed network alignment,” in Proceedings of the Web Conference 2021, 2021, pp. 3896–3906.
  24. L. Yartseva and M. Grossglauser, “On the performance of percolation graph matching,” in Proceedings of the first ACM conference on Online social networks, 2013, pp. 119–130.
  25. J. Lubars and R. Srikant, “Correcting the output of approximate graph matching algorithms,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications.   IEEE, 2018, pp. 1745–1753.
  26. D. Cullina, P. Mittal, and N. Kiyavash, “Fundamental limits of database alignment,” in 2018 IEEE International Symposium on Information Theory (ISIT), 2018, pp. 651–655.
  27. J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic efficiency for network flow problems,” J. ACM, vol. 19, no. 2, p. 248–264, apr 1972. [Online]. Available: https://doi.org/10.1145/321694.321699
  28. V. Chvátal, “The tail of the hypergeometric distribution,” Discrete Mathematics, vol. 25, pp. 285–287, 1979.
  29. M. Kim and J. Leskovec, “Multiplicative attribute graph model of real-world networks,” Internet mathematics, vol. 8, no. 1-2, pp. 113–160, 2012.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com