Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polyphone Disambiguation in Mandarin Chinese with Semi-Supervised Learning (2102.00621v3)

Published 1 Feb 2021 in cs.CL and cs.AI

Abstract: The majority of Chinese characters are monophonic, while a special group of characters, called polyphonic characters, have multiple pronunciations. As a prerequisite of performing speech-related generative tasks, the correct pronunciation must be identified among several candidates. This process is called Polyphone Disambiguation. Although the problem has been well explored with both knowledge-based and learning-based approaches, it remains challenging due to the lack of publicly available labeled datasets and the irregular nature of polyphone in Mandarin Chinese. In this paper, we propose a novel semi-supervised learning (SSL) framework for Mandarin Chinese polyphone disambiguation that can potentially leverage unlimited unlabeled text data. We explore the effect of various proxy labeling strategies including entropy-thresholding and lexicon-based labeling. Qualitative and quantitative experiments demonstrate that our method achieves state-of-the-art performance. In addition, we publish a novel dataset specifically for the polyphone disambiguation task to promote further research.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets