Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polyphone Disambiguation for Mandarin Chinese Using Conditional Neural Network with Multi-level Embedding Features (1907.01749v1)

Published 3 Jul 2019 in cs.CL, eess.AS, and stat.ML

Abstract: This paper describes a conditional neural network architecture for Mandarin Chinese polyphone disambiguation. The system is composed of a bidirectional recurrent neural network component acting as a sentence encoder to accumulate the context correlations, followed by a prediction network that maps the polyphonic character embeddings along with the conditions to corresponding pronunciations. We obtain the word-level condition from a pre-trained word-to-vector lookup table. One goal of polyphone disambiguation is to address the homograph problem existing in the front-end processing of Mandarin Chinese text-to-speech system. Our system achieves an accuracy of 94.69\% on a publicly available polyphonic character dataset. To further validate our choices on the conditional feature, we investigate polyphone disambiguation systems with multi-level conditions respectively. The experimental results show that both the sentence-level and the word-level conditional embedding features are able to attain good performance for Mandarin Chinese polyphone disambiguation.

Citations (25)

Summary

We haven't generated a summary for this paper yet.